Correction des exercices du TD 2

Exercice 1

Montrer, à l'aide de la définition, que la suite de terme général $u_n = \frac{n+1}{2n+3}$ a pour limite 1/2.

CORRECTION: Soit $\epsilon > 0$, on cherche N tel que $\forall n \geq N, |u_n - \frac{1}{2}| < \epsilon$, or

$$u_n - \frac{1}{2} = -\frac{1}{2(2n+3)}.$$

Ainsi pour
$$N = E\left(\frac{1}{2}\left(\frac{1}{2\epsilon} - 3\right)\right) + 1$$
, pour $n \ge N$, $\frac{1}{2(2n+3)} \le \frac{1}{2(2N+3)} < \epsilon$.

Exercice 2

Montrer, à l'aide de la définition, que la suite determe gééral $u_n = \frac{2n+1}{n+2}$ a pour limite 2.

CORRECTION: Soit $\epsilon > 0$, on cherche N tel que $\forall n \geq N, |u_n - 2| < \epsilon$, or

$$u_n - 2 = -\frac{3}{n+2}.$$

Ainsi pour
$$N = E\left(\frac{3}{\epsilon} - 2\right) + 1$$
, pour $n \ge N$, $\frac{3}{n+2} \le \frac{3}{N+2} < \epsilon$.

Exercice 3

Soit la suite géométrique de raison 1/4 et de premier terme $u_1 = 2$. Exprimer le n-ième terme en fonction du (n-1)-ième puis en fonction de n.

CORRECTION: par définition de suite géométrique on sait que $u_n = \frac{1}{4}u_{n-1}$, donc

$$u_n = \frac{1}{4}u_{n-1} = \left(\frac{1}{4}\right)^2 u_{n-2} = \dots = \left(\frac{1}{4}\right)^{n-1} u_1 = \left(\frac{1}{4}\right)^{n-1} 2$$

Etudier la monotonie de cette suite.

CORRECTION: puisque $u_n > 0$ pour tout $n \in \mathbb{N}$ et $\frac{u_{n+1}}{u_n} = \frac{1}{4} < 1$, la suite est décroissante.

Cette suite est-elle convergente?

CORRECTION: oui. En effet on sait que $\left(\frac{1}{4}\right)^n \to 0$ lorsque $n \to +\infty$, car 0 < 1/4 < 1, donc on peut dire que

$$\lim_{n \to +\infty} u_n = 0$$

Exercice 4

Soit la suite arithmetique de raison 5 et de premier terme $u_1 = 1$. Exprimer le n-ième terme en fonction du (n-1)-ième puis en fonction de n.

CORRECTION: par définition de suite arithmétique on sait que $u_n = u_{n-1} + 5$, donc

$$u_n = u_{n-1} + 5 = u_{n-2} + 10 = \dots = u_1 + 5(n-1) = 1 + 5(n-1) = 5n - 4$$

Etudier la monotonie de cette suite.

CORRECTION: puisque $u_n - u_{n-1} = 5 > 0$ pour tout $n \in \mathbb{N}$, la suite est croissante.

Cette suite est-elle convergente?

CORRECTION: bien sûr que non. En effet on a que $u_n = n(5 - \frac{4}{n})$, mais on sait que $\frac{4}{n} \to 0$ lorsque $n \to +\infty$, donc on peut dire que

$$\lim_{n \to +\infty} u_n = +\infty$$

Exercice 5

La suite $\left(\frac{\cos n}{n+1}\right)$ est-elle convergente?

CORRECTION: De l'encadrement $-1 \leq \cos x \leq 1$ pour tout $x \in \mathbb{R}$, on déduit les inégalités suivantes :

$$\left|\frac{\cos n}{n+1}\right| = \frac{|\cos n|}{n+1} \le \frac{1}{n+1} \le \frac{1}{n}.$$

La suite $\left(\frac{1}{n}\right)$ convergeant vers 0, le théorème des gendarmes (Chap. III) nous permettrait de conclure que la suite $\left(\frac{\cos n}{n+1}\right)$ converge vers 0. Prouvons-le à l'aide de la définition.

Fixons $\varepsilon > 0$. On définit alors N comme le plus petit entier naturel strictement supérieur à $\frac{1}{\varepsilon}$ $(N = E(1/\varepsilon) + 1)$. Notons que $N > \frac{1}{\varepsilon}$ et donc si $n \ge N$ alors

$$\frac{1}{n} \le \frac{1}{N} < \varepsilon.$$

Ainsi pour tout $n \geq N$

$$\left| \frac{\cos n}{n+1} - 0 \right| \le \frac{1}{n} < \varepsilon.$$

La suite $\left(\frac{\cos n}{n+1}\right)$ converge bien vers 0.

Exercice 6

La suite $\left(-\frac{\sin n^2}{n+3}\right)$ est-elle convergente?

CORRECTION: De l'encadrement $-1 \le \sin x \le 1$ pour tout $x \in \mathbb{R}$, on déduit les inégalités suivantes:

$$\left| -\frac{\sin n^2}{n+3} \right| = \frac{|\sin n^2|}{n+3} \le \frac{1}{n+3} \le \frac{1}{n}.$$

La suite $\left(\frac{1}{n}\right)$ convergeant vers 0, le théorème des gendarmes (Chap. III) nous permettrait de conclure que la suite $\left(-\frac{\sin n^2}{n+3}\right)$ converge vers 0. Prouvons-le à l'aide de la définition.

Fixons $\varepsilon > 0$. On définit alors N comme le plus petit entier naturel strictement supérieur à $\frac{1}{\varepsilon}$ $(N = E(1/\varepsilon) + 1)$. Notons que $N > \frac{1}{\varepsilon}$ et donc si $n \ge N$ alors

$$\frac{1}{n} \le \frac{1}{N} < \varepsilon.$$

Ainsi pour tout $n \geq N$

$$\left| -\frac{\sin n^2}{n+3} - 0 \right| \le \frac{1}{n} < \varepsilon.$$

La suite $\left(-\frac{\sin n^2}{n+3}\right)$ converge bien vers 0.

Exercice 7

Déterminer la nature et la limite éventuelle des suites de termes généraux:

1)
$$u_n = \sqrt{n^2 + 3n + 1} - \sqrt{n^2 + 2n + 1}$$

CORRECTION: Il s'agit là d'une forme indéterminée (F.I.) de la forme " $\infty - \infty$ ". Pour lever l'indétermination, multiplions et divisons u_n par la quantité conjuguée:

$$u_n = \left(\sqrt{n^2 + 3n + 1} - \sqrt{n^2 + 2n + 1}\right) \times \frac{\sqrt{n^2 + 3n + 1} + \sqrt{n^2 + 2n + 1}}{\sqrt{n^2 + 3n + 1} + \sqrt{n^2 + 2n + 1}}$$

$$= \frac{(n^2 + 3n + 1) - (n^2 + 2n + 1)}{\sqrt{n^2 + 3n + 1} + \sqrt{n^2 + 2n + 1}} = \frac{n}{\sqrt{n^2 + 3n + 1} + \sqrt{n^2 + 2n + 1}} \quad \text{(F.I. de la forme } \frac{\infty}{\infty}\text{)}$$

$$= \frac{n}{n\left(\sqrt{1 + \frac{3}{n} + \frac{1}{n^2}} + \sqrt{1 + \frac{2}{n} + \frac{1}{n^2}}\right)} = \frac{1}{\sqrt{1 + \frac{3}{n} + \frac{1}{n^2}} + \sqrt{1 + \frac{2}{n} + \frac{1}{n^2}}}$$

Etant donné que les suites $\left(\frac{2}{n}\right)$, $\left(\frac{3}{n}\right)$ et $\left(\frac{1}{n^2}\right)$ convergent vers 0, on déduit de la dernière formulation de u_n que $\lim_{n\to+\infty}u_n=\frac{1}{2}$.

$$2) u_n = \frac{1-n}{n^2}$$

CORRECTION: Ecrivons

$$u_n = \frac{1-n}{n^2} = \frac{n(\frac{1}{n}-1)}{n^2} = \frac{1}{n}\left(\frac{1}{n}-1\right).$$

Etant donné que $\lim_{n\to+\infty}\frac{1}{n}=0$ alors $\lim_{n\to+\infty}u_n=0$

3)
$$u_n = \frac{2+n}{1+n} \left(1 + \frac{8}{n^2} \right)$$

CORRECTION: Ecrivons

$$u_n = \frac{2+n}{1+n} \left(1 + \frac{8}{n^2} \right) = \frac{n(\frac{2}{n}+1)}{n(\frac{1}{n}+1)} \left(1 + \frac{8}{n^2} \right) = \frac{\frac{2}{n}+1}{\frac{1}{n}+1} \left(1 + \frac{8}{n^2} \right).$$

Etant donné que les suites $\left(\frac{2}{n}\right)$, $\left(\frac{1}{n}\right)$ et $\left(\frac{8}{n^2}\right)$ convergent vers 0 alors $\lim_{n\to+\infty}u_n=1$.

Exercice 8

Déterminer la nature et la limite éventuelle des suites de terme généraux : 1) $u_n = \frac{3^n - 2^n}{3^n + 2^n}$; CORRECTION : En mettant en facteur 3^n à numérateur et à dénominateur on obtient :

$$u_n = \frac{3^n (1 - (2/3)^n)}{3^n (1 + (2/3)^n)} = \frac{1 - (2/3)^n}{1 + (2/3)^n},$$

mais $\lim_{n\to+\infty} (2/3)^n = 0$, donc $\lim_{n\to+\infty} u_n = 1$. La suite $(u_n)_n$ est donc convergente et sa limite est égale à 1.

2) $u_n = \frac{1-n}{n}$.

CORRECTION: On peut écrire:

$$u_n = \frac{1-n}{n} = \frac{1}{n} - 1,$$

mais $\lim_{n\to+\infty}\frac{1}{n}=0$, donc $\lim_{n\to+\infty}u_n=-1$. La suite $(u_n)_n$ est donc convergente et sa limite est égale à -1.

3) $u_n = e^{-n^{\pi}} \cos(\pi/6)$.

CORRECTION: le terme $\cos(\pi/6)$ est une constante. Puisque $\lim_{n\to+\infty} n^{\pi} = +\infty$, alors $\lim_{n\to+\infty} -n^{\pi} = -\infty$, et par conséquent $\lim_{n\to+\infty} e^{-n^{\pi}} = 0$. Puisque $\cos(\pi/6)$ est une constante, on a aussi que $\lim_{n\to+\infty} u_n = 0$. La suite $(u_n)_n$ est donc convergente et sa limite est égale à 0.

Exercice 9

On considère la suite (u_n) définie par $u_n = e^{2n-1}$.

1) Trouver le plus petit entier n_0 tel que $n \ge n_0 \Rightarrow |u_n| > 10^7$. CORRECTION: puisque $u_n = e^{2n-1} > 0$, il suffit de résoudre l'inéquation $e^{2n-1} > 10^7$. On a

$$e^{2n-1} > 10^7 \Leftrightarrow \ln e^{2n-1} > \ln 10^7 \Leftrightarrow 2n-1 > 7 \ln 10 \Leftrightarrow n > \frac{7 \ln 10 + 1}{2}$$
.

On sait donc que si $n > \frac{7 \ln 10 + 1}{2}$, alors $|u_n| > 10^7$. Mais le nombre réel $\frac{7 \ln 10 + 1}{2}$ n'est pas un entier. Puisqu'on demande le plus petit entier n_0 tel que pour tout $n \ge n_0$ on a que $|u_n| > 10^7$, on choisira $n_0 = E(\frac{7 \ln 10 + 1}{2}) + 1$, où si $x \in \mathbb{R}$, E(x) désigne la partie entière de x, c'est-à dire le plus grand entier $m \in \mathbb{Z}$ tel que $m \le x$. Ainsi, $n_0 = E(\frac{7 \ln 10 + 1}{2}) + 1$ sera le plus petit entier supérieur à $\frac{7 \ln 10 + 1}{2}$, et donc si $n \ge n_0$ on a certainement que $n > \frac{7 \ln 10 + 1}{2}$, d'où $|u_n| > 10^7$, mais si $n < n_0$ alors $n \le \frac{7 \ln 10 + 1}{2}$, donc $|u_n| \le 10^7$.

2) Démontrer que $\lim_{n\to+\infty} u_n = +\infty$ en utilisant la définition.

CORRECTION: il s'agit de montrer que pour tout M>0, il existe $N\in\mathbb{N}$ tel que pour tout $n\in\mathbb{N}$ on a

$$n > N \Rightarrow u_n > M$$
.

Soit donc M > 0. Puisque $u_n = e^{2n-1}$, on va considérer l'inéquation $e^{2n-1} > M$. On a

$$e^{2n-1} > M \Leftrightarrow \ln e^{2n-1} > \ln M \Leftrightarrow 2n-1 > \ln M \Leftrightarrow n > \frac{\ln M + 1}{2}.$$

Encore une fois le terme $\frac{\ln M+1}{2}$ n'est pas forcement un entier. Nous allons donc choisir $N=E(\frac{\ln M+1}{2})+1$. On sait que N est un entier et $N>\frac{\ln M+1}{2}$, donc si $n\in\mathbb{N}$ on sait que

$$n \ge N \Rightarrow n > \frac{\ln M + 1}{2} \Rightarrow u_n = e^{2n-1} > M,$$

d'où la conclusion. On a bien vérifié que $\lim_{n\to +\infty} u_n = +\infty$.

Exercice 10

On considère la suite $(u_n)_n$ définie par $u_n = \ln(2n^2 + 1)$.

1) Trouver le plus petit entier n_0 tel que $n \ge n_0 \Rightarrow |u_n| > 10^7$.

CORRECTION: Observons que $u_n \ge 0$ pour tout $n \in \mathbb{N}$, donc $|u_n| = u_n$. Il s'agit donc de trouver le plus petit entier n vérifiant l'équation $\ln(2n^2 + 1) > 10^7$. Mais

$$\ln(2n^2+1) > 10^7 \quad \Leftrightarrow \quad 2n^2+1 > e^{10^7} \quad \Leftrightarrow n^2 > \frac{e^{10^7}-1}{2} \quad \Leftrightarrow \quad n > \sqrt{\frac{e^{10^7}-1}{2}}.$$

Il suffit donc de poser

$$n_0 = \text{Min}\left\{ n \in \mathbb{N}, \quad n > \sqrt{\frac{e^{10^7} - 1}{2}} \right\}.$$

Si x est un réel, notons E(x) la partie entière de x, c'est-à-dire le plus grand entier $n \in \mathbb{Z}$ tel que $n \le x$. Par conséquent, E(x) + 1 est toujours le plus petit entier n tel que x < n. Grâce à cette notation on a donc que $n_0 = E\left(\sqrt{\frac{e^{10^7}-1}{2}}\right) + 1$.

Démontrer que $\lim_{n\to+\infty}u_n=+\infty$ en utilisant la définition.

CORRECTION : Il s'agit de montrer que pour tout M>0 il existe $N\in\mathbb{N}$ tel que pour tout $n\in\mathbb{N}$ on a

$$n \ge N \implies u_n > M$$
.

Soit donc M > 0. On pose l'inéquation $u_n > M$, ce qui équivaut à $\ln(2n^2 + 1) > M$, mais alors

$$\ln(2n^2+1) > M \iff 2n^2+1 > e^M \iff n^2 > \frac{e^M-1}{2} \iff n > \sqrt{\frac{e^M-1}{2}}.$$

Il suffit donc de poser

$$N = \text{Min } \left\{ n \in \mathbb{N} \quad n > \sqrt{\frac{e^M - 1}{2}} \right\} = E\left(\sqrt{\frac{e^M - 1}{2}}\right) + 1.$$

On aura bien que

$$n \ge N \Rightarrow u_n > M$$
.

On peut donc affirmer que $\lim_{n\to +\infty} u_n = +\infty$.

Exercice 11

Parmi les suites définies ci-dessous par leur terme général dire celles qui sont divergentes et trouver la limite de celles qui sont convergentes.

$$-\frac{1-n}{n^2}$$
.

CORRECTION: posons donc $u_n = \frac{1-n}{n^2}$. On peut écrire $u_n = \frac{1}{n^2} - \frac{1}{n}$. Mais nous savons que $\lim_{n \to +\infty} \frac{1}{n^2} = \lim_{n \to +\infty} \frac{1}{n} = 0$, donc $\lim_{n \to +\infty} u_n = 0$, et par conséquent la suite $(u_n)_n$ est convergente et sa limite est 0.

$$-3n-7.$$

CORRECTION: posons $u_n = 3n - 7$. On a $u_n = n(3 - \frac{7}{n})$. Mais $\lim_{n \to +\infty} \frac{7}{n} = 0$, et $\lim_{n \to +\infty} n = +\infty$, donc

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} n(3 - \frac{7}{n}) = +\infty.$$

La suite $(u_n)_n$ est donc divergente.

$$-n\sin^2(n\pi/2)$$
.

CORRECTION: posons $u_n = n \sin^2(n\pi/2)$. Considérons les suites extraites $(u_{2n})_n$ et $(u_{2n+1})_n$. Étudions d'abord la suite $(u_{2n})_n$. Nous savons que $\sin(2n\pi/2) = \sin(n\pi) = 0$, donc $u_{2n} = 0$ pour tout $n \in \mathbb{N}$, et en particulier $\lim_{n \to +\infty} u_{2n} = 0$.

Étudions maintenant la suite $(u_{2n+1})_n$. Nous savons que $\sin((2n+1)\pi/2) = \sin(n\pi + \frac{\pi}{2})$, mais

pour tout réel x nous savons que $\sin(x+\pi) = -\sin x$, donc une récurrence immediate nous dit que $\sin(n\pi + \frac{\pi}{2}) = (-1)^n \sin(\pi/2) = (-1)^n$, et donc

$$u_{2n+1} = (2n+1)\sin^2(n\pi + \frac{\pi}{2}) = (2n+1) \to +\infty$$
, lorsque $n \to +\infty$.

Nous savons donc que $(u_{2n})_n$ est une suite extraite convergente, et $(u_{2n+1})_n$ est une suite extraite divergente, donc $(u_n)_n$ diverge.

$$-\frac{2n^3+n^2}{(1+n)^2}$$
.

CORRECTION: posons $u_n = \frac{2n^3 + n^2}{(1+n)^2}$. On a

$$u_n = \frac{n^3(2+\frac{1}{n})}{n^2(1+\frac{1}{n})^2} = n\frac{2+\frac{1}{n}}{(1+\frac{1}{n})^2}.$$

Mais $\lim_{n\to +\infty} 2+\frac{1}{n}=2$ et $\lim_{n\to +\infty} (1+\frac{1}{n})^2=1$, et encore $\lim_{n\to +\infty} n=+\infty$, donc

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} n \frac{2 + \frac{1}{n}}{(1 + \frac{1}{n})^2} = +\infty.$$

La suite $(u_n)_n$ est donc divergente.

$$-\left(\frac{n}{1+n}\right)^{2n}$$
.

CORRECTION: posons $u_n = \left(\frac{n}{1+n}\right)^{2n}$. On peut écrire

$$u_n = \left(\frac{1}{1 + \frac{1}{n}}\right)^{2n} = \left(1 + \frac{1}{n}\right)^{-2n} = \left[\left(1 + \frac{1}{n}\right)^n\right]^{-2}.$$
 (1)

Mais

$$\left(1 + \frac{1}{n}\right)^n = e^{n\ln(1+1/n)} = e^{\frac{\ln(1+1/n)}{1/n}}.$$

Or, on sait que $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$, et $1/n\to 0$ quand $n\to +\infty$, donc $\lim_{n\to +\infty} \frac{\ln(1+1/n)}{1/n} = 1$, donc

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = \lim_{n \to +\infty} e^{\frac{\ln(1 + 1/n)}{1/n}} = e^1 = e.$$

En remplaçant dans l'expression de u_n donnée dans (1) on obtient que $\lim_{n\to+\infty}u_n=e^{-2}=1/e^2$. La suite $(u_n)_n$ est donc convergente et sa limite est égale à $1/e^2$.

$$- (n^4 + 2n^2)e^{1-n}.$$

CORRECTION: posons $u_n = (n^4 + 2n^2)e^{1-n}$. On a

$$u_n = n^4 \left(1 + 2\frac{1}{n^2}\right) \frac{e}{e^n} = \frac{n^4}{e^n} (e \times (1 + 2/n^2)).$$

Mais par croissance comparée $\lim_{n\to+\infty}\frac{n^4}{e^n}=0$, et $\lim_{n\to+\infty}e(1+2/n^2)=e$, donc $\lim_{n\to+\infty}u_n=0$. La suite $(u_n)_n$ est donc convergente et sa limite est 0.

Exercice 12

Parmi les suites définies ci-dessous par leur terme général dire celles qui sont divergentes et trouver la limite de celles qui sont convergentes

$$\frac{1-n}{n^2}$$

CORRECTION: Posons $u_n = \frac{1-n}{n^2}$. On a

$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} \frac{1}{n^2} - \frac{1}{n} = 0,$$

car $\lim_{n\to+\infty}\frac{1}{n}=\lim_{n\to+\infty}\frac{1}{n^2}=0$, donc la suite $(u_n)_n$ est convergente et sa limite est égale à 0.

$$3n^3 - 2n^2 + n - 5$$

CORRECTION: Posons $u_n = 3n^3 - 2n^2 + n - 5$. On peut écrire:

$$u_n = n^3 \left(3 - \frac{2}{n} + \frac{1}{n^2} - \frac{5}{n^3} \right),$$

mais $\lim_{n\to+\infty} n^3 = +\infty$ et

$$\lim_{n\to +\infty}\frac{2}{n}=\lim_{n\to +\infty}\frac{1}{n^2}=\lim_{n\to +\infty}-\frac{5}{n^3}=0,$$

 donc

$$\lim_{n \to +\infty} u_n = +\infty,$$

et par conséquent la suite $(u_n)_n$ est divergente.

$$\sqrt{n+1} - \sqrt{n}$$

CORRECTION: Posons $u_n = \sqrt{n+1} - \sqrt{n}$. On a

$$u_n = \sqrt{n+1} - \sqrt{n} = \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n}} \times \frac{1}{\left(\sqrt{1+1/n} + 1\right)},$$

mais $\lim_{n\to+\infty}\sqrt{n}=+\infty$, donc $\lim_{n\to+\infty}\frac{1}{\sqrt{n}}=0$, et par ailleurs, puisque $\lim_{n\to+\infty}\frac{1}{n}=0$ on aura que $\lim_{n\to+\infty}\frac{1}{\sqrt{(1+1/n)}+1}=\frac{1}{2}$, par conséquent

$$\lim_{n \to +\infty} u_n = 0 \times \frac{1}{2} = 0.$$

La suite $(u_n)_n$ est donc convergente et sa limite est égale à 0.

$$\frac{\ln(n)}{n^{1/2}}$$

CORRECTION: Posons la suite $u_n = \frac{\ln(n)}{n^{1/2}}$ et la fonction $f(x) = \frac{\ln x}{x^{1/2}}$, définie pour x > 0. Il est clair que $u_n = f(n)$. On sait que $\lim_{x \to +\infty} f(x) = 0$ car vous avez vu au premier semestre que $\lim_{x \to +\infty} \frac{\ln^{\alpha} x}{x^{\beta}} = 0$ pour tout $\alpha \in \mathbb{R}$ et pour tout $\beta > 0$, donc $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} f(n) = 0$. En particulier la suite $(u_n)_n$ est convergente et sa limite est égale à 0.

$$\left(n+\frac{1}{n}\right)^n$$

CORRECTION: Posons $u_n = \left(n + \frac{1}{n}\right)^n$. Il est clair que pour tout $n \ge 1$ on a bien que $n+1/n > n \ge 1$, donc

$$u_n = \left(n + \frac{1}{n}\right)^n \ge n + \frac{1}{n} > n,$$

et $\lim_{n \to +\infty} n = +\infty$, donc par le théorème des gendarmes on a également que

$$\lim_{n \to +\infty} u_n = +\infty,$$

donc la suite $(u_n)_n$ est divergente.

$$\frac{(\ln n)^{\alpha}}{n^{\beta}}$$

CORRECTION: Posons $u_n = \frac{(\ln n)^{\alpha}}{n^{\beta}}$. On discute la convergence de $(u_n)_n$ selon les valeurs de α et β . Posons $f(x) = \frac{(\ln x)^{\alpha}}{x^{\beta}}$, pour x > 0. Il est clair que $u_n = f(n)$.

- Si $\beta > 0$ et α est un réel quelconque alors

$$\lim_{x \to +\infty} \frac{(\ln x)^{\alpha}}{x^{\beta}} = 0,$$

donc $\lim_{n\to+\infty} u_n = \lim_{n\to+\infty} f(n) = 0$, donc dans ce cas la suite $(u_n)_n$ converge et sa limite est égale à 0.

- Si $\beta = 0$ et $\alpha < 0$ alors $f(x) = \frac{1}{(\ln x)^{|\alpha|}}$, donc $\lim_{x \to +\infty} \frac{1}{(\ln x)^{|\alpha|}} = 0$, et par conséquent $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} f(n) = 0$, donc dans ce cas la suite $(u_n)_n$ est encore convergente et sa limite est 0.
- Si $\beta = 0$ et $\alpha = 0$ alors f(x) = 1, donc $u_n = f(n) = 1$ pour tout $n \in \mathbb{N}^*$, donc $\lim_{n \to +\infty} u_n = 1$. La suite $(u_n)_n$ est donc convergente et sa limite est égale à 1.
- Si $\beta = 0$ et $\alpha > 0$ alors $f(x) = (\ln x)^{\alpha}$ et donc

$$\lim_{n \to +\infty} u_n = \lim_{x \to +\infty} (\ln x)^{\alpha} = +\infty,$$

donc dans ce cas la suite $(u_n)_n$ est divergente.

- Si $\beta < 0$ alors pour tout $\alpha \in \mathbb{R}$ et pour tout x > 1 on a que $f(x) = x^{|\beta|} (\ln x)^{\alpha}$, et on sait que $\lim_{x \to +\infty} f(x) = +\infty$, car $|\beta| > 0$ (peut importe la valeur de α), donc $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} f(n) = +\infty$. La suite $(u_n)_n$ est donc divergente dans ce cas.

Exercice 13

1) Montrer que la suite $(\sin(n\frac{\pi}{2}))$ n'a pas de limite.

CORRECTION: posons $v_n = \sin(n\frac{\pi}{2})$ pour $n \ge 0$. Considérons maintenant les sous-suites $(v_{2n})_n$ et $(v_{4n+1})_n$. On vérifie aisément que

$$v_{2n} = \sin(2n\frac{\pi}{2}) = \sin(n\pi) = 0,$$

pour tout $n \in \mathbb{N}$, car le sinus d'un multiple entier de π est toujours nul. Et d'autre part :

$$v_{4n+1} = \sin((4n+1)\frac{\pi}{2}) = \sin(2n\pi + \frac{\pi}{2}) = \sin(\frac{\pi}{2}) = 1$$

pour tout $n \in \mathbb{N}$. En particulier

$$\lim_{n \to +\infty} v_{2n} = 0 \quad \text{et} \quad \lim_{n \to +\infty} v_{4n+1} = 1$$

On voit bien que $(v_{2n})_n$ et $(v_{4n+1})_n$ sont deux sous-suites de $(v_n)_n$ ayant des limites différents. Par conséquent $(v_n)_n$ ne peut pas être convergente. 2) On considère la suite de terme général $u_n = \sin(\frac{n\pi}{2}) + \frac{1}{n}$. Construire trois suites extraites de u_n): une qui converge vers 0, une qui converge vers 1 et une qui converge vers -1.

CORRECTION: en gardant la même notation $v_n = \sin(n\pi 2)$ que dans la question précédente, nous pouvons écrire $u_n = v_n + \frac{1}{n}$. On a déjà vu que $v_{4n} = 0$ pour tout $n \in \mathbb{N}$, donc on obtient $\lim_{n \to +\infty} u_{4n} = \lim_{n \to +\infty} \frac{1}{4n} = 0$. On peut donc affirmer que $(u_{4n})_n$ est une suite extraite de $(u_n)_n$ convergeante vers 0. De même

$$u_{4n+1} = \sin(2n\pi + \frac{\pi}{2}) + \frac{1}{4n+1} = 1 + \frac{1}{4n+1},$$

ainsi $\lim_{n\to+\infty} u_{4n+1} = 1$, car $\lim_{n\to+\infty} \frac{1}{4n+1} = 0$, et donc $(u_{4n+1})_n$ est une suite extraite de $(u_n)_n$ convergeante vers 1. Pour terminer

$$u_{4n-1} = v_{4n-1} + \frac{1}{4n-1} = \sin(2n\pi - \frac{\pi}{2}) + \frac{1}{4n-1} = -1 + \frac{1}{4n-1},$$

ainsi $\lim_{n\to+\infty} u_{4n-1} = -1$, car $\lim_{n\to+\infty} \frac{1}{4n-1} = 0$, et donc $(u_{4n-1})_n$ est une suite extraite de $(u_n)_n$ convergeante vers -1.

Exercice 14

Soit q un entier supérieur ou égal à 2. Pour tout $n \in \mathbb{N}$, on pose $u_n = \cos \frac{2n\pi}{a}$.

1) Montrer que $u_{n+q} = u_n$ pour tout n.

CORRECTION : la fonction $x\mapsto\cos x$ étant 2π -périodique, il est clair que

$$u_{n+q} = \cos\frac{2(n+q)\pi}{q} = \cos\left(\frac{2n\pi}{q} + 2\pi\right) = \cos\left(\frac{2n\pi}{q}\right) = u_n,$$

pour tout $n \in \mathbb{N}$, ce qui prouve l'assertion.

2) Calculer u_{nq} et u_{nq+1} . En déduire que (u_n) n'a pas de limite.

CORRECTION: D'après la question 1), une récurrence immédiate nous dit que

$$u_{nq} = u_{(n-1)q+q} = u_{(n-1)q} = \dots = u_0 = \cos(0) = 1$$

pour tout $n \in \mathbb{N}$, et de même

$$u_{nq+1} = u_{(n-1)q+q+1} = u_{(n-1)q+1} = \dots = u_1 = \cos(\frac{2\pi}{q})$$

Mais par hypothèse $q \geq 2$, donc $0 < \frac{2\pi}{q} \leq \pi$. La fonction $x \mapsto \cos x$ étant décroissante sur $[0,\pi]$, puisque $\cos 0 = 1$ et $\cos \pi = -1$, nous avons que $-1 \leq \cos(\frac{2\pi}{q}) < 1$. Nous pouvons donc affirmer que $(u_{nq})_n$ et $(u_{nq+1})_n$ sont deux sous-suite constantes de $(u_n)_n$, en particulier

$$\lim_{n \to +\infty} u_{nq} = 1 \quad \text{et } \lim_{n \to +\infty} u_{nq+1} = \cos(\frac{2\pi}{q}) \neq 1.$$

Nous avons la deux sous-suites de $(u_n)_n$ ayant des limites différents, donc $(u_n)_n$ ne peux pas être convergente.