Feuille d'exercices n° 2 - Vecteurs et géométrie vectorielle

Dans cette feuille, on munit le plan (resp. l'espace) d'un repère orthonormé (O, \vec{i}, \vec{j}) (resp. $(O, \overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$) et on exprime les coordonnées dans ce repère.

Vecteurs du plan

Exercice 1. On considère les points A(1,0) et B(2,1) et les vecteurs du plan suivants :

$$\overrightarrow{u_1}(1,2); \quad \overrightarrow{u_2} = \overrightarrow{i} - \overrightarrow{j}; \quad \overrightarrow{u_3} = \overrightarrow{AB}; \quad \overrightarrow{u_4} = 3\overrightarrow{u_3} - \overrightarrow{u_2}.$$

- 1. Calculer les produits scalaires $\langle \overrightarrow{u_n}, \overrightarrow{u_m} \rangle$ avec n, m deux entiers compris entre 1 et 4.
- 2. Parmi les vecteurs $\overrightarrow{u_1}$, $\overrightarrow{u_2}$, $\overrightarrow{u_3}$, $\overrightarrow{u_4}$, quels sont ceux qui sont orthogonaux? colinéaires?
- 3. Pour tout entier $n \in \{1, 2, 3, 4\}$, déterminer un vecteur $\overrightarrow{v_n}$ unitaire (c'est-à-dire de norme 1) et colinéaire à $\overrightarrow{u_n}$. Combien y a-t-il de choix pour chacun d'eux?
- 4. Les vecteurs $(\overrightarrow{v_2} \text{ et } \overrightarrow{v_3})$ forment une base orthonormée du plan. Exprimer les coordonnées de $\overrightarrow{u_1}$ et $\overrightarrow{u_4}$ dans cette base.
- 5. Déterminer tous les vecteurs orthogonaux à $\overrightarrow{u_1}$. Combien y en a-t-il de même norme que $\overrightarrow{u_1}$?

Exercice 2. Donner des équations paramétrique et cartésienne de la droite \mathcal{D} passant par le point A(1,1) et de vecteur directeur $\overrightarrow{i} + 2\overrightarrow{j}$. Donner un vecteur normal et la pente de \mathcal{D} . Quelle est l'ordonnée du point de \mathcal{D} dont l'abscisse vaut 3?

Exercice 3. Trois droites du plan sont définies par une équation cartésienne :

$$\mathcal{D}_1: y = x + 1; \quad \mathcal{D}_2: y = 3x - 2; \quad \mathcal{D}_3: y = -x + 2.$$

Calculer l'aire du triangle ABC où $\{A\} = \mathcal{D}_1 \cap \mathcal{D}_2, \{B\} = \mathcal{D}_2 \cap \mathcal{D}_3, \{C\} = \mathcal{D}_3 \cap \mathcal{D}_1.$

Exercice 4. On considère la droite \mathcal{D} du plan passant par les points A(5,3) et B(-1,0).

- 1. Déterminer un vecteur directeur ainsi qu'une équation paramétrique de la droite \mathcal{D} .
- 2. Écrire une équation cartésienne de \mathcal{D} .
- 3. Soit M le point du plan de coordonnées (0,3).
 - (a) Déterminer les coordonnées du projeté orthogonal H de M sur \mathcal{D} .
 - (b) Quelle est la distance entre M et \mathcal{D} ?
- 4. Calculer l'aire du triangle ABM.
- 5. En plus d'être rectangle, quelle propriété a le triangle BHM?

Exercice 5. On considère les vecteurs $\overrightarrow{u} = \frac{3}{5}\overrightarrow{v} + \frac{4}{5}\overrightarrow{\jmath}$ et $\overrightarrow{v} = -\frac{4}{5}\overrightarrow{v} + \frac{3}{5}\overrightarrow{\jmath}$.

- 1. Montrer que les vecteurs \overrightarrow{u} et \overrightarrow{v} forment une base orthonormée du plan.
- 2. Calculer les coordonnées du vecteur $\overrightarrow{w} = -2\overrightarrow{\imath} + \overrightarrow{\jmath}$ dans la base $(\overrightarrow{u}, \overrightarrow{v})$.

Exercice 6. Jean se trouve dans un champ bordé par une rivière supposée rectiligne. Jean est au point J de coordonnées (2,4) et la rivière passe par les points A(1,-1) et B(5,2). Jean veut aller se baigner dans la rivière et s'y rend au plus court (l'unité de longueur est l'hectomètre).

- 1. Déterminer les coordonnées du point de baignade de Jean.
- 2. Quelle distance a-t-il parcourue pour aller se baigner?

Vecteurs de l'espace

Exercice 7. On considère les vecteurs $\overrightarrow{u} = \overrightarrow{i} + 3\overrightarrow{j} + 2\overrightarrow{k}$ et $\overrightarrow{v} = 2\overrightarrow{i} - 3\overrightarrow{j} + 3\overrightarrow{k}$.

- 1. Sont-ils colinéaires? Sont-ils orthogonaux?
- 2. Déterminer un vecteur non nul \overrightarrow{w} orthogonal à la fois à \overrightarrow{u} et à \overrightarrow{v} .

Exercice 8. On considère les vecteurs $\overrightarrow{u} = \overrightarrow{\imath} + \overrightarrow{\jmath} - \overrightarrow{k}$ et $\overrightarrow{\imath} = -2\overrightarrow{\jmath} + \overrightarrow{k}$.

- 1. Calculer un vecteur $\overrightarrow{e_1}$ colinéaire à \overrightarrow{u} et de norme 1.
- 2. Déterminer tous les vecteurs \overrightarrow{x} de la forme $\overrightarrow{x} = \alpha \overrightarrow{u} + \beta \overrightarrow{v}$ où $\alpha \in \mathbb{R}$, $\beta \in \mathbb{R}$ et qui sont orthogonaux à \overrightarrow{u} . Trouver un tel vecteur $\overrightarrow{e_2}$ qui soit aussi de norme 1.
- 3. Déterminer un vecteur $\overrightarrow{e_3}$ tel que $(\overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3})$ forme une base orthonormée.

Exercice 9. Soient les points M_1 de coordonnées (1, -1, 2), M_2 de coordonnées (0, 2, 1), M_3 de coordonnées (-1, 2, 1) et M de coordonnées (x, y, z).

- 1. Les points M_1 , M_2 et M_3 sont-ils alignés?
- 2. À quelle(s) condition(s) portant sur x, y, z le point M appartient-il au plan passant par M_1 , M_2 et M_3 ?

Exercice 10. Soit $\vec{u} = \vec{i} + 2\vec{j} - \vec{k}$ et $\vec{v} = 2\vec{i} + 3\vec{j} - \vec{k}$.

- 1. Les vecteurs \vec{u} et \vec{v} sont-ils colinéaires? Sont-ils orthogonaux? Justifier.
- 2. Donner une équation paramétrique du plan \mathcal{P} passant par le point A de coordonnées (1,0,3) et de base vectorielle (\vec{u},\vec{v}) .
- 3. Calculer $\vec{u} \wedge \vec{v}$ et justifier qu'une équation cartésienne du plan \mathcal{P} est x-y-z+2=0.
- 4. Calculer la distance du point M de coordonnées (1,1,-1) au plan \mathcal{P} .
- 5. Quelles sont les coordonnées du projeté orthogonal de M sur \mathcal{P} ?

Exercice 11. En l'absence de champ électrostatique, la force de Lorentz pour une particule de charge q et de vitesse \overrightarrow{v} dans un champ magnétique \overrightarrow{B} s'exprime par : $\overrightarrow{F} = q \overrightarrow{v} \wedge \overrightarrow{B}$. Exprimer le vecteur \overrightarrow{B} dans la base orthonormée $(\overrightarrow{v}, \overrightarrow{j}, \overrightarrow{k})$, sachant que ses deux premières coordonnées sont égales, lorsque q = 2, $\overrightarrow{v} = 2\overrightarrow{v} + 4\overrightarrow{j} + 6\overrightarrow{k}$ et $\overrightarrow{F} = 4\overrightarrow{v} - 20\overrightarrow{j} + 12\overrightarrow{k}$.

Exercice 12. Soient quatre points M(1, -1, 2), A(2, 1, 0), B(-1, 1, 1) et C(0, 2, 1).

- 1. Montrer que les points A, B et C ne sont pas alignés.
- 2. Déterminer une équation cartésienne du plan \mathcal{P} passant par A, B et C.
- 3. Déterminer le projeté orthogonal de M sur le plan \mathcal{P} .
- 4. Calculer la distance de M à \mathcal{P} .
- 5. Donner une équation paramétrique, puis un système d'équations cartésiennes, de la droite (AB).
- 6. Déterminer le projeté orthogonal de M sur la droite (AB).

Exercices complémentaires

Exercice 13. Soit A de coordonnées (-2,1) et B de coordonnées (0,5). On note \mathcal{D} la droite passant par les points A et B.

- 1. Écrire un vecteur directeur de \mathcal{D} et calculer ses coordonnées.
- 2. Donner une équation cartésienne et une équation paramétrique de \mathcal{D} .
- 3. Calculer la distance du point M de coordonnées (1,2) à la droite \mathcal{D} . On note \mathcal{D}' la droite passant par M perpendiculaire à \mathcal{D} .
- 4. Quelles sont les coordonnées du point d'intersection de \mathcal{D} et \mathcal{D}' ?

Exercice 14. Soit a un nombre réel non nul et f la fonction définie par $f(x) = e^{ax}$. Soit M un point de la courbe \mathcal{C}_f représentative de f d'abscisse x_0 .

- 1. Déterminer l'équation de la tangente \mathcal{T} à \mathcal{C}_f au point M.
- 2. Le point M se projette orthogonalement sur l'axe des abscisses en un point H. On note C le point d'intersection de \mathcal{T} avec l'axe des abscisses.
 - (a) Illustrer la situation sur un dessin.
 - (b) Montrer que la distance HC ne dépend pas du point M choisi.

Exercice 15. On considère les deux droites de l'espace suivantes :

$$\mathcal{D}: \left\{ \begin{array}{lll} 2x + 5y + z & = & 9 \\ x + 3y + 2z & = & 5 \end{array} \right. \quad \text{et} \quad \mathcal{D}': \left\{ \begin{array}{lll} 2x + 3y - 3z & = & 7 \\ x + 2y - z & = & 5 \end{array} \right..$$

- 1. Trouver un vecteur directeur \overrightarrow{u} de \mathcal{D} et un vecteur directeur \overrightarrow{u}' de \mathcal{D}' .
- 2. Trouver un point A de \mathcal{D} et un point A' de \mathcal{D}' .
- 3. Montrer que les droites \mathcal{D} et \mathcal{D}' sont disjointes.

Exercice 16 (Extrait de l'examen terminal seconde session 2018-2019). Dans \mathbb{R}^3 , on considère les points A de coordonnées (0,1,-1), B de coordonnées (-1,1,1), C de coordonnées (1,2,-2) et D de coordonnées (-2,-1,-2).

- 1. Calculer les coordonnées du vecteur $\overrightarrow{AB} \wedge \overrightarrow{AC}$. Les points A, B et C sont-ils alignés?
- 2. Déterminer une équation cartésienne du plan \mathcal{P} passant par A, B et C.
- 3. Déterminer le projeté orthogonal du point D sur le plan \mathcal{P} .
- 4. Donner une équation paramétrique de la droite (AB).
- 5. Donner un système d'équations cartésiennes de la droite (AB).
- 6. Justifier que la distance du point D à la droite (AB) vaut $\|\overrightarrow{AD}\|$. Calculer cette distance.