Lista de exercícios 3 Sequências de números reais

(Os exercícios marcados com * são os mais pertinentes).

Exercício 1* Uma sequência diz-se *periódica* quando existe $p \in \mathbb{N}$ tal que $x_{n+p} = x_n$ para todo $n \in \mathbb{N}$. Prove que toda sequência periódica convergente é constante.

Exercício 2* Dadas as sequências $(x_n)_n$ e $(y_n)_n$, defina $(z_n)_n$ pondo $z_{2n-1} = x_n$ e $z_{2n} = y_n$ para todo $n \in \mathbb{N}$. Se $\lim x_n = \lim y_n = a$, prove que $\lim z_n = a$.

Exercício 3* Se $\lim x_n = a$, prove que $\lim |x_n| = |a|$.

Exercício 4^* Se uma sequência monótona tem uma subsequência convergente, prove que a sequência é, ela própria, convergente.

Exercício 5* Um número a chama-se valor de aderência da sequência $(x_n)_n$ quando é limite de uma subsequência de $(x_n)_n$. Para cada um dos conjuntos $A, B \in C$ abaixo, encontre uma sequência que o tenha como conjunto de seus valores de aderência. $A = \{1, 2, 3\}, B = \mathbb{N}, C = [0, 1].$

Exercício 6* A fim de que o número real a seja valor de aderência de $(x_n)_n$ é necessário e suficiente que, para todo $\varepsilon > 0$ e todo $k \in \mathbb{N}$ dados, exista n > k tal que $|x_n - a| < \varepsilon$.

Exercício 7* A fim de que o número real b não seja valor de aderência da sequência $(x_n)_n$, é necessário e suficiente que existam $n_0 \in \mathbb{N}$ e $\varepsilon > 0$ tais que $n > n_0 \implies |x_n - n| \ge \varepsilon$.

Exercício 8* Se $\lim x_n = a, \lim y_n = b$ e $|x_n - y_n| \ge \varepsilon$ para todo $n \in \mathbb{N}$, prove que $|a - b| \ge \varepsilon$.

Exercício 9* Sejam $\lim x_n = a$ e $\lim x_n = b$. Se a < b, prove que existe $n_0 \in \mathbb{N}$ tal que $n > n_0 \implies x_n < y_n$.

Exercício 10* Se o número real a não é o limite de uma sequência limitada $(x_n)_n$, prove que alguma subsequência de $(x_n)_n$ converge para um limite $b \neq a$.

Exercício 11* Prove que uma sequência limitada converge se, e somente se, possui um único valor de aderência.

Exercício 12* Quais são os valores de aderência da sequência $(x_n)_n$ tal que $x_{2n-1} = n$ e $x_{2n} = 1/n$? Esta sequência converge?

Exercício 13* Diz-se que $(x_n)_n$ é uma sequência de Cauchy quando, para todo $\varepsilon > 0$ dado, existe $n_0 \in \mathbb{N}$ tal que $m, n > n_0 \implies |x_m - x_n| < \varepsilon$.

- a) Prove que toda sequência de Cauchy é limitada.
- b) Prove que uma sequência de Cauchy não pode ter dois valores de aderência distintos.
- c) Prove que uma sequência $(x_n)_n$ é convergente se, e somente se, é de Cauchy.

Exercício 14* Prove que, para todo $p \in \mathbb{N}$, $\lim_{n\to\infty} {}^{n+p} \sqrt{n} = 1$.

Exercício 15* Se existem $\varepsilon > 0$ e $k \in \mathbb{N}$ tais que $\varepsilon \le x_n \le n^k$ para todo n suficientemente grande, prove que $\lim \sqrt[n]{x_n} = 1$. Use este fato para calcular $\lim \sqrt[n]{n+k}$, $\lim \sqrt[n]{n+\sqrt{n}}$, $\lim \sqrt[n]{\log n}$ e $\lim \sqrt[n]{\log n}$.

Exercício 16 Defina a sequência $(a_n)_n$ indutivamente, pondo $a_1 = a_2 = 1$ e $a_{n+2} = a_{n+1} + a_n$ para todo $n \in \mathbb{N}$. Escreva $x_n = \frac{a_n}{a_{n+1}}$ e prove que $\lim x_n = c$, onde x é o único número positivo tal que $\frac{1}{c+1} = c$. O termo a_n chama-se n-ésimo número de Fibonacci e $c = (-1 + \sqrt{5})/2$ é o número de ouro da Geometria Clássica.

Exercício 17* Prove que $\lim \sqrt[n]{n!} = +\infty$.

Exercício 18* Se $\lim x_n = +\infty$ e $a \in \mathbb{R}$, prove que

$$\lim_{n \to \infty} \left[\sqrt{\log(x_n + a)} - \sqrt{\log x_n} \right] = 0.$$

Exercício 19* Dados $k \in \mathbb{N}$ e a > 0, determine o limite

$$\lim_{n\to\infty}\frac{n!}{n^k\cdot a^n}.$$

Supondo a > 0 e $a \neq e$, calcule

$$\lim_{n \to \infty} \frac{a^n \cdot n!}{n^n} \quad e \quad \lim_{n \to \infty} \frac{n^k \cdot a^n \cdot n!}{n^n}.$$

Exercício 20* Mostre que $\lim \frac{\log(n+1)}{\log n} = 1$.

Exercício 21 Sejam $(x_n)_n$ uma sequência arbitrária e $(y_n)_n$ uma sequência crescente, com $\lim y_n = +\infty$. Supondo que $\lim (x_{n+1} - x_n)/(y_{n+1} - y_n) = a$, prove que $\lim x_n/y_n = a$. Conclua que, se $\lim (x_{n+1} - x_n) = a$, então $\lim x_n/n = a$. Em particular, de $\lim \log(1+1/n) = 0$, conclua que $\lim (\log n)/n = 0$.